Ela the Convergence Rate of the Chebyshev Semiiterative Method under a Perturbation of the Foci of an Elliptic Domain∗
نویسندگان
چکیده
The Chebyshev semiiterative method (CHSIM) is a powerful method for finding the iterative solution of a nonsymmetric real linear system Ax = b if an ellipse excluding the origin well fits the spectrum of A. The asymptotic rate of convergence of the CHSIM for solving the above system under a perturbation of the foci of the optimal ellipse is studied. Several formulae to approximate the asymptotic rates of convergence, up to the first order of a perturbation, are derived. These generalize the results about the sensitivity of the asymptotic rate of convergence to a perturbation of a real-line segment spectrum by Hageman and Young, and by the first author. A numerical example is given to illustrate the theoretical results.
منابع مشابه
The convergence rate of the Chebyshev semiiterative method under a perturbation of the foci of an elliptic domain
The Chebyshev semiiterative method (CHSIM) is a powerful method for finding the iterative solution of a nonsymmetric real linear system Ax = b if an ellipse excluding the origin well fits the spectrum of A. The asymptotic rate of convergence of the CHSIM for solving the above system under a perturbation of the foci of the optimal ellipse is studied. Several formulae to approximate the asymptoti...
متن کاملModified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کاملEstimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model
In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...
متن کاملTHE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS
In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...
متن کاملAnalytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کامل